$\mathbf{V}_{\text {achhani sirs }} \mathbf{T}_{\text {cechnical }} \mathbf{G}_{\text {ems }}$

मave
 Dr. Vachhani

Chapter 10

Shearing force and Bending Moment Diagrams

A structural engineering framework consists of Beams and columns. Beams are subjected to shearing force and bending moment. It is therefore desirable to know the value of shearing force and Bending moment, all along the length of the beam.

What is Shearing force and Bending Moment and how to calculate and sketch the diagram for these.

Shearing Force

It is defined to be the algebraic sum of all the vertical forces (including reactions), which are perpendicular to the horizontal axis of the beam on One Side of the section. Mathematical notation along with sign convention are given on the right hand side.

Bending Moment

It is defined to be the algebraic sum of moments of all the vertical forces (including reactions) on One Side of the Section.

Standard Loading Problem

We will take first two problems of the simple beam and two problems of the cantilever beam. The results of these FOUR problems should be at the fingertips of all the students.

-veS.F

Sign-Conventions

LAOO Dr. Vachhani

Standard loading Problem 1 (Proceed from Left-hand side)

$1^{\text {st }}$ Step:
Calculate Reactions $\mathrm{V}_{\mathrm{A}} \& \mathrm{~V}_{\mathrm{B}}$. This has been already explained. Presently because of Symmetry

$$
V_{A}=V_{B}=W / 2 \uparrow
$$

Shear force at any section x will be denoted by V_{x} and B.M will be denoted by M_{x}.

SFD (Shear Force Diagrams)

Equations \& Calculations

Eq.(1)

$$
x=0, \quad V_{0}=+W / 2, \quad x=L / 2, \quad V_{L} / 2=+W / 2,
$$

Eq (2)

$$
x=L / 2, \quad V_{L / 2}=-W / 2, \quad V_{L}=-W / 2
$$

BMD (Bending Moment Diagram) Equations \& Calculation
AC,

$$
M_{x}=+W / 2 x, \quad 0<x<L / 2---(1),
$$

$$
\left(M_{A}=M_{o}=0, \quad M_{C}=M_{L / 2}=+W L / 4\right)
$$

$C B$,

$$
M_{x}=+W / 2 \cdot x-W(x-L / 2), L / 2<x<L<x,
$$

$$
\left(M_{c}=M_{L / 2}=+W L / 4, M_{B}=M_{L}=0\right)
$$

LAVO Dr. Vachhani

Standard loading problem 2

Because of Symmetry, Reactions

$$
V_{A}=V_{B}=\text { Total Load } / 2=w L / 2
$$

SFD Calculations

$$
A B \quad V_{x}=w L / 2-w x \quad \rightarrow \text { (1) }
$$

L(Hence, there will be only one equation)
$V_{0}=w L / 2, \quad V_{L / 2}=0, \quad V_{L}=-w L / 2$
(1) is an equation to a straight line.

BMD Calculations

AB $\quad M_{x}=w L / 2 . x-w x^{2} / 2 \rightarrow(1)$
Which is an equation to Parabola
$M_{A}=M_{0}=0, \quad M_{C}=M_{L / 2}=+w L^{2} / 8, \quad M_{B}=M_{L}=0$

It may be noted that Maximum BM occurs when $\mathrm{SF}=0$

LlAGO Dr. Vachhani

Standard Loading Problem3 Cantilever Beam

Reactions

$\Sigma H=0, \cdots+--\rightarrow+$ e, Therefore $+H A=0$
$\Sigma V=0, \uparrow+v e,+V_{A}-W=0$, Therefore, $V_{A}=+W \uparrow$
$\Sigma M_{a t A}=0,{ }^{\curvearrowright}+v e_{1}+M_{A}+H_{A} \times 0+V_{A} \times 0+W L=0$
(Assume $M_{A}+v e$, i.e clockwise)

Therefore $M_{A}=-W L$

SFD, Proceeding from R.H.S
$A B, \quad V_{x}=+W \cdots(1)$ (Equation to a straight line)

Please see RHS for Sign Conventions

Here x is measured from RHS
$B A, \quad M_{x}=-W \cdot x \rightarrow--\rightarrow 1$, When $x=0, \quad M_{0}=M_{B}=0$
When $x=L, M_{L}=M_{A}=-W L$
This equation is also an equation to a straight line.

मAVO Dr. Vachhani

Standard Loading Problem-4

Reactions

$$
\begin{aligned}
& \Sigma H=0--\rightarrow+v e, \quad H_{A}=0 \\
& \Sigma V=0, \quad \uparrow+v e,+V_{A}-w L=0, \text { Therefore } V_{A}=w L+\uparrow \\
& \Sigma M_{\text {atA }}=0, \curvearrowright_{+v e}, \\
& +M_{A} \text { (Assume Clockwise) }+H_{A} \times 0+V_{A} \times 0+w L^{2} / 2=0
\end{aligned}
$$

Therefore $M_{A}=-\mathrm{wL}^{2} / 2 \mathrm{kN} . \mathrm{m}$

Proceeding from R.H.S.
Measure x from R.H.S.

$$
V_{x}=+w x--\rightarrow(1) \text { For } S F, V o=0, V L=+w L
$$

Equation to a straight line

$$
M_{x}=-w x \cdot x / 2=-w x 2 / 2 \text { for } B M, M_{0}=0, M_{L}=-w L^{2} / 2 \mathrm{kN} . \mathrm{m}
$$

Equation to a parabola. (Please see sign convention of R.H.S only).

$\mathbf{V}_{\text {achhanis }}$ srs $\mathbf{T}_{\text {cectmineal }} \mathbf{G}_{\mathrm{ems}}$

LAAO Dr. Vachhani

Example 5 : Sketch SF and BM diagrams giving the values at principal locations at A, B, C and D.

Solution:

Reactions:

$$
\begin{aligned}
& \Sigma H=0,---\rightarrow+v e \quad H_{A}=0 \\
& +V_{A}+V_{B}-2 x 6-3=0, \quad \text { Therefore, } \quad V_{A}+V_{B}=15----\rightarrow 1 \\
& \Sigma \text { Mat } A=0, \curvearrowright+v e \\
& H_{A} \times 0+V_{A} \times 0+(2 \times 6)(6 / 2)+3 \times 8-V_{B} \times 10=0 \\
& \text { Therefore } V_{B}=+6 \mathrm{kN} \text {, From(1) we get, } V_{A}=+9 \mathrm{kN}
\end{aligned}
$$

Shear Force Calculations and SFD
$A C, \quad V_{x}=+9-2 x, 0<x<6 \quad$ (Inclined Straight line), $\quad V_{A}=+9, V_{C}=-3$

$C D$,	$V_{x}=+9-2 x 6=-3$,	$6<x<8$
$V_{x}=+9-2 x 6-3=-6$,	$8<x<10$	

Using these 3 equations and values determined above SFD is drawn.

Bending Moment Calculations and BMD

$A C, \quad M_{x}=+9 x-2 x^{2} / 2, \quad 0<x<6----\rightarrow 1, M_{A}=0, \quad M_{C}=+18 \mathrm{kN} . \mathrm{m}$

$\mathbf{V}_{\text {achhani sirs }} \mathbf{T}_{\text {echnical }} \mathbf{G}_{\text {ems }}$

LlAGO Dr. Vachhani

$C D$,
$M_{x}=+9 x-(2 x 6)(x-3), 6<x<9----->2, \quad M_{C}=+18 k N . m, \quad M_{D}=12 k N . m$
DB, Equation (3) not required, because $\mathrm{M}_{\mathrm{B}}=0$.
Maximum BM will occur at point of zero SF, ie. $x=4.5 \mathrm{~m}$
\& $\mathrm{M}_{4.5}=9 \times 4.5-2 \times 4.5 \times 4.5 / 2=20.25 \mathrm{kN} . \mathrm{m}$.

Example 6 : Sketch SFD and BMD for the following overhanging beam loaded as Shown in the Figure.

-ve BM

Reactions:

Σ Mat $A=0, \circlearrowright+v e$

$$
\begin{aligned}
& -2 \times 3+V_{A} \times 0+12 \times 6+4-V_{B} \times 10+2=0, \quad \text { Therefore } V_{B}=+7.2 \mathrm{kN} \\
& \Sigma V=0, \uparrow+v e, \\
& V_{A}+V_{B}-2-12=0, \quad \text { Therefore } V_{A}=+6.8 \mathrm{kN} \uparrow
\end{aligned}
$$

Shear Force Calculations \& SFD

Please carefully connect the numerical values with Sign conventions given on Right Hand Side.Therefore $\quad{ }_{R} V_{C}=-2, \quad \angle V_{A}=-2, \quad{ }_{R} V_{A}=+4.8, \quad \angle V_{D}=+4.8, \quad{ }_{R} V_{D}=-7.2$,

$$
{ }_{L} V_{B}=-7.2, \quad{ }_{R} V_{B}=0
$$

$\mathbf{V}_{\text {achhani sirs }} \mathbf{T}_{\text {cechnical }} \mathbf{G}_{\text {ems }}$

LANO

(explanation---------L V_{A} means Shear Force at A on the Left hand side, $\mathrm{R} V_{A}$ means SF at A on Right hand side)

Plot these values at every point on left and right and connect these with straight linesResult will be SFD

Bending Moment Calculations and BMD

Consider the Sign Convention as shown on RHS, calculate the values of BM at every point.

$$
\begin{aligned}
& M_{C}=0, \quad M_{A}=-6 k N . m, \quad M_{D}=+22.8 \mathrm{kN} . \mathrm{m}, \quad L M_{E}=+8.4 \mathrm{kN} . \mathrm{m} \\
& { }_{\mathrm{R}} M_{E}=+12.4 \mathrm{kN} . \mathrm{m}, \quad M_{B}=-2 \mathrm{kN} . \mathrm{m}, \quad M_{F}=-2.0 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

Above six examples have been solved by regular procedure as given in all the books. In order to simplify the procedure, we may omit the formation of equations and using "distinct features" of Shearing Force and Bending Moment diagrams, the necessary SFD \& BMD can be obtained by Mechanical Method.

Distinct Features_(or properties)

Shearing Force Diagram (SFD)

1. No load will be represented by a horizontal line in SFD.
2. A vertical load or a vertical reaction will be represented by a Vertical line in SFD.
3. Proceeding from left, uniformly distributed load will be represented by an inclined straight line sloping down in SFD
We will limit to only these 3 distinct features. Moment loading will not have any effect on SFD.

Vachhani sir's $\mathbf{T}_{\text {echnical }}$ Gems

LANO

Procedure of drawing SFD (Just walk on the beam)

In the above diagram simple beam with loading is given. No numerical values are given. Just enter the beam at A and walk along the beam.

When you reach at A you will be lifted up by V_{A} Vertically upwards by the same magnitude. A to C, there is no load, as such A to C will be a horizontal line and one can walk straight to C .

At C, there is vertical down load and so it will push you down by same magnitude. Walking from C to D is similar to A to C. Accordingly $C D$ will be a horizontal line. D to B is a uniformly distributed load, as per distinct feature 3, it will be inclined straight line sloping down.

Finally, when you come out of the beam, you will be pushed up by V_{B} to the level of the beam. If it does not, your calculations are wrong.

Please see the diagram carefully. The level at which you entered at A is same at which you got out at B.

Distinct Features: Bending Moment Diagram (BMD)

1. A moment (or couple) loading will be represented by a Vertical Line of that magnitude.
2. No load portions will be represented by straight lines (horizontal or inclined) in BMD.
3. Uniformly distributed load will be represented by a parabolic curve in BMD.
4. A sudden change in the slope of diagram in BMD will indicate presence of a vertical load or a vertical reaction at that point.

Only above four important features are given to solve most of the problems.

From 1st principles, calculate $B M$ at principal locations A, B, C, D.

HAVO Dr. Vachhani

$M_{A}=0$, Obvius
$M_{B}=0$, Obvius
$M_{C}=+$?, Calculate and mark the vertical ordinate in BMD as M_{C}
$M_{D}=+$? Calculate and mark the vertical ordinate in BMD as M_{D}

C to D-No Load-----CD inclined straight line (draw line 2)
D to B-No-Load-----DB inclined straight line (draw line 3)
A to C ---------------A Parabolic Curve (draw curve 1)
You need 3 points to sketch a curve, $\mathrm{M}_{\mathrm{A}}, \mathrm{M}_{\mathrm{C}}$ and M_{E}.
$\mathrm{M}_{\mathrm{A}}=0, \mathrm{Mc}_{\mathrm{c}}$ already calculated above, $\mathrm{M}_{\mathrm{E}}=$ Maximum BM (A point at which Shearing Force is Zero)

$\mathbf{V}_{\text {achhani sirs }} \mathbf{T}_{\text {echnical }} \mathbf{G}_{\text {ems }}$

LAAG Dr. Vachhani

Following Two Problems are solved by using distinct features and mechanical method.

Example No. 8

Using Distinct Features, Sketch SFD and BMD, giving values at principal locations.

Reactions:

$\Sigma M_{\text {atA }}=0, \quad$ Clockwise $+v e$,
$-2 \times 2-4+V_{A} \times 0+(2 \times 6) \times(3)+4-V_{B} \times 10+4 \times 12-6=0$
$V_{B}=+7.4 \mathrm{kN}$
$\Sigma V=0,+v e$,
$+V_{A}+V_{B}-2-(2 \times 6)-4=0 \quad$ Therefore $V_{A}=+10.6 k N$

$\mathbf{V}_{\text {achhani sirs }} \mathbf{T}_{\text {technical }} \mathbf{G}_{\text {ems }}$

LlANO Dr. Vachhani

Using Mechanical Method, SFD

ie. Walking on the beam from C to E. SFD is drawn as shown.

BM Calculations at Principal Locations:

$$
\begin{aligned}
& M_{C}=-4, M_{A}=-8, \\
& M_{F}=-4-2 \times 8+10.6 \times 6-(2 \times 6) \times 3=+7.6 \mathrm{kN} . \mathrm{m} \\
& M_{E}=+6, M_{B}=+6-(4 \times 2)=-2, \\
& { }_{R} M_{D}=-4 \times 4+6+7.4 \times 2=+4 \mathrm{kN} . \mathrm{m}, \\
& { }_{L} M_{D}=+4.8-4=0.8 \mathrm{kN} . \mathrm{m} .
\end{aligned}
$$

Example No : $9 \quad$ A Cantilever beam problem

 Using Distinct Features, Sketch SFD and BMD.

Reactions,

$$
\Sigma V=0, I+v e,
$$

$$
V_{A}-6-2-2 \times 4=0, \quad \text { Therefore } V_{A}=+16 \mathrm{kN}
$$

LAGO Dr. Vachhani

$\Sigma M_{\text {atA }}=0, \quad$ Clockwise + ve,$M_{A}+V_{A} \times 0+6 \times 4+2 \times 4 \times 6+2 \times 10+2=0$

Therefore, $M_{A}=-98 \mathrm{kN} . \mathrm{m}$

$$
\begin{array}{ll}
M_{B}=-2 \mathrm{kN} \cdot \mathrm{~m} & M_{E}=-2-2 * 2=-6 \mathrm{kN} \cdot \mathrm{~m} \\
M_{D}=-30 \mathrm{kN} \cdot \mathrm{~m} & { }_{R} M_{C}=-6 \times 2-(2 \times 4) 4-2 \times 8-2=-62 \mathrm{kN} \cdot \mathrm{~m} \\
& \angle M_{C}=-66 \mathrm{kN} . \mathrm{m}
\end{array}
$$

Cases of Pure Bending

A portion of the beam which does not carry any Shear Force, but has the bending moment, is called a case of Pure Bending.

Two such examples are shown below

There is pure $B M$ in portion $C D$.

There is pure $B M$ in portion $A B$.

Relationship between "Load", "SF" \& "BM"

LAAO Dr. Vachhani

Let the SF at section x from A be " V " and $B M$ be " M ",

The relationships will be as follows:

$$
\begin{aligned}
& d V / d x=-w \quad-------\rightarrow(1) \\
& d M / d x=V \quad-------\rightarrow \text { (2) } \\
& \text { Therefore, } \quad d^{2} M / d x^{2}=d V / d x=-w \rightarrow---\rightarrow(3)
\end{aligned}
$$

Proof of these 3 equations will be given later after explaining the "Free Body Diagram" concept.

Define Point of Contraflexure

1. It is a point at which the curvature of the beam changes sign in the deflected shape. From concavity upwards to convexity upwards.
2. It is a point at which Bending Moment changes sign from positive to negative or from negative to positive.
3. It is a point at which Bending Moment is zero.

Following diagrams will explain the required definition:

Uniform Curvature (+ve)
Concavity Upwards through out

Uniform Curvature (-ve)
Convexity Upwards through out

Both the types of curvatures appear.
The points ($\mathrm{E} \& \mathrm{~F}$) at which curvature changes sign are 2 points of contraflexure.

$\mathbf{V}_{\text {achhani sirs }} \mathbf{T}_{\text {cechnical }} \mathbf{G}_{\text {ems }}$

LAAO Dr. Vachhani

Free Body Diagram:

It is a diagram of an isolated portion of a structure which shows the applied loads and the loads exerted by the removed elements.

Relationship Between Load, Shear Force and Bending Moment using Free Body Diagram Concept:

Free Body Diagram of isolated portion CD:

Consider FBD as shown above.

$$
\begin{aligned}
& \Sigma V=0, \uparrow+v e, \quad+V-w \cdot \delta x-(V+\delta v)=0 \\
& \quad \text { Therefore } \frac{d v}{d x}=-w, \text { in the limit } \delta x \rightarrow 0, \frac{d v}{d x}=-w
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma M a t D D^{\prime}=0, \curvearrowright+v e,+M+V \cdot \delta x-w \cdot \frac{\delta x^{2}}{2}+(V+\delta v) 0-(M+\delta M)=0 \\
& \text { or, }+V \cdot \delta x-w \cdot \frac{\delta x^{2}}{2}-\delta M=0 \\
& \text { or, } \frac{\delta M}{\delta x}=V-w \cdot \frac{\delta x}{2} \text {, In the limit } \delta x \rightarrow 0, \quad \frac{d M}{d x}=V
\end{aligned}
$$

Differentiating 2, We get $\frac{d^{2} M}{d x^{2}}=\frac{d V}{d x}=-w$
Equation 2 indicates that Maximum BM occurs when $\mathrm{V}=\mathrm{SF}=0$.

$\mathbf{V}_{\text {achhani irirs }} \mathbf{T}_{\text {echnical }} \mathbf{G}_{\text {ems }}$

みAQO Dr. Vachhani

Additional Typical Problems With only "Moment Loadings"

Example 1. Sketch SFD and BMD for the given beam with only Two Moment Loadings as shown. $\left(\mathrm{M}_{\mathrm{A}}=+30 \mathrm{kN} . \mathrm{m}, \mathrm{M}_{\mathrm{B}}=+10 \mathrm{kN} . \mathrm{m}\right)$

Reactions: Apply conditions of Equilibrium
$\Sigma \mathrm{M}$ at $\mathrm{A}=0$, clockwise $+\mathrm{ve},+30+\mathrm{V}_{\mathrm{A}} \mathrm{X} 0+10-\mathrm{V}_{\mathrm{B}} \times 10=0$
Therefore, $\mathrm{V}_{\mathrm{B}}=+4 \mathrm{kN}$, and $\mathrm{V}_{\mathrm{A}}=-4 \mathrm{kN}$
SFD Just Walk on the Beam
At A, go down by 4 kN . A to B no-load and as such Horizontal
Straight line. At B go up by same amount $V_{B}=4$ and reach at the same level.

$\mathbf{V}_{\text {achhani sir's }} \mathbf{T}_{\text {echnical }} \mathbf{G}_{\text {ems }}$

LANO

BMD $M_{A}=+30$ (See sign convention diagram on the right side)
$M_{B}=+30-4 \times 10=-10 \mathrm{kN} . \mathrm{m}$
Or Look at the RHS of sign convention, clockwise, BM on
On RHS is -ve. i.e $-10 \mathrm{kN} . \mathrm{m}$
Also refer Distinct Feature 1 of BMD, Two Moment loadings are
Represented by Two Vertical lines at A and B in BMD.

Example 2. Sketch SFD and BMDfor the given beam with Three Moment Loadings of $30 \mathrm{kN}, \mathrm{m}, 20 \mathrm{kN} . \mathrm{m}$ and $10 \mathrm{kN} . \mathrm{m}$ as shown in the Figure (clockwise moments On LHS +ve)

Reactions Apply conditions of Equilibrium M at $A=0$, Clockwise moments +ve, $+30+20+10+V_{A} \times 0-V_{B} \times 10=0 \quad$ Therefore $V_{B}=+6 \mathrm{kN}$ Hence, $V_{A}=-6 \mathrm{kN}$
SFD Can be drawn mechanically as shown in the Figure
BMD Calculations
$\mathrm{M}_{\mathrm{A}}=+30 \mathrm{kN} . \mathrm{m}, \quad\left\llcorner\mathrm{M}_{\mathrm{C}}=+30-6 \times 5=0, \quad \mathrm{RMc}=+30-6 \times 5+20=+20 \mathrm{kN} . \mathrm{m}\right.$ $\mathrm{LM} \mathrm{B}_{\mathrm{B}}=+30+20-6 \times 10=-10 \mathrm{kN} . \mathrm{m}, \quad \mathrm{RM} \mathrm{M}_{\mathrm{B}}=10$ Clockwise on RHS i.e. $-10 \mathrm{kN.m}$ (As per adopted sign convention of BM)

Vachhani sir's $\mathbf{T}_{\text {echnical }}$ Gems

HANO

Example 3 Sketch SFD and BMD for an overhanging beam with 2 Moment Loadings of $\mathbf{3 0} \mathbf{~ k N . m}$ and $10 \mathrm{kN} . \mathrm{m}$ as shown.

Reactions Apply conditions of Equilibrium.

M at $\mathrm{A}=\mathbf{0}$, Clockwise + ve
$+30+\mathrm{V}_{\mathrm{A}} \times 0-\mathrm{V}_{\mathrm{B}} \mathrm{X} 10+10=0$, Therefore $\mathrm{V}_{\mathrm{B}}=+4 \mathrm{kN}$, Hence, $\mathrm{V}_{\mathrm{A}}=-4 \mathrm{kN}$
SFD

BMD
Can be drawn Mechanically as shown (Just walk on the beam from C to D up and down at every location of vertical load or reaction) Calculations
$\mathrm{M}_{\mathrm{C}}=+30 \mathrm{kN} . \mathrm{m}_{1} \mathrm{M}_{\mathrm{A}}=+30 \mathrm{kN} . \mathrm{m}, \mathrm{M}_{\mathrm{B}}=+30-4 \times 10=-10 \mathrm{kN} . \mathrm{m}$
$M_{D}=+30+10-V_{A} \times 12+V_{B} \times 2=30+10-4 \times 12+4 \times 2=-10 \mathrm{kN} . \mathrm{m}$
(Please note that $M_{D}=-10 \mathrm{kN} . \mathrm{m}$ is obvious from the definition of BM, considering RHS)
Two Moment Loadings (No Moment Reaction). Therefore,
Two Vertical Lines at C and D

Vachhani sir's ${ }^{\text {Technical }}$ Gems

LAOQ

Example 4. A Cantilever beam is subjected to 2 Moment loadings of $30 \mathrm{kN.m}$ and 10 kN.m as shown. Sketch SFD and BMD.

Reactions

SFD

BMD

At rigid end " A ", all the three movements are prevented and therefore, there will be three reactions, H, V and M as shown in the the figure and are assumed to be +ve

Apply conditions of Equilibrium, $\quad \mathrm{M}$ at $\mathrm{A}=0$, Clockwise +ve, $+\mathrm{M}_{\mathrm{A}}+\mathrm{H}_{\mathrm{A}} \times 0+\mathrm{V}_{\mathrm{A}} \times 0+30+10=0$, Therefore $\mathrm{M}_{\mathrm{A}}=-40 \mathrm{kN} . \mathrm{m}$ It is clear that both H_{A} and V_{A} will be Zero,
Hence, SFD will be Zero from A to B. A single horizontal straight line.

Calculations
$M_{A}=-40 \mathrm{kN} . \mathrm{m}, \mathrm{RM} \mathrm{C}=-40+30=-10 \mathrm{kN} . \mathrm{m}, \mathrm{LM}_{\mathrm{B}}=-40+30=-10 \mathrm{kN} . \mathrm{m}$

Important Conclusions:-

If only 3 distinct features of SF and 3 distinct features of BM are remembered, there will be no difficulty in drawing SFD and BMD. Students often make mistakes in drawing BMD

LAAG Dr. Vachhani

when moment loading moment reactions are there. For this difficulty, only distinct feature No. 1 of BM may be understood and remembered. Number of vertical lines in BMD will be equal to number of moment loadings and moment reactions given in the actual beam. In the above Example 4, it is seen that there are 3 vertical lines in BMD corresponding to 3 Moment loadings/Reactions.

